Rapidly declining costs of truck batteries and fuel cells enable large-scale road freight electrification

  • Jaramillo, P. et al. in IPCC, 2022 - Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) Ch.

    10 (Cambridge Univ. Press, 2023).

  • Plotz, P. et al.

    Greenhouse gas emission budgets and policies for zero-carbon road transport in Europe. Clim. Policy 23, 343-354 (2023).

    Article[1] Google Scholar[2]

  • Creutzig, F. et al.

    Energy and environment. Transport: a roadblock to climate change mitigation? Science 350, 911-912 (2015).

    Article[3] Google Scholar[4]

  • Tracking Clean Energy Progress 2023 https://www.iea.org/reports/tracking-clean-energy-progress-2023[5] (IEA, 2023).

  • Heavy-duty Vehicles: Council and Parliament Reach a Deal to Lower CO2 Emissions from Trucks, Buses and Trailers https://www.consilium.europa.eu/en/press/press-releases/2024/01/18/heavy-duty-vehicles-council-and-parliament-reach-a-deal-to-lower-co2-emissions-from-trucks-buses-and-trailers[6] (European Council, 2024).

  • California Approves World's First Regulation to Phase Out Dirty Combustion Trucks and Protect Public Health https://www.gov.ca.gov/2023/04/28/california-approves-worlds-first-regulation-to-phase-out-dirty-combustion-trucks-and-protect-public-health/[7] (Office of Gov.

    Gavin Newsom, 2023).

  • Zhang, Y. & Hui, H. China's efforts to decarbonize road transport: decent, but not sufficient. ICCT https://theicct.org/china-ev-efforts-mar22[8] (2023).

  • Khanna, N., Lu, H., Fridley, D. & Zhou, N.

    Near and long-term perspectives on strategies to decarbonize China's heavy-duty trucks through 2050. Sci. Rep.

    11, 20414 (2021).

    Article[9] Google Scholar[10]

  • Anderhofstadt, B. & Spinler, S. Factors affecting the purchasing decision and operation of alternative fuel-powered heavy-duty trucks in Germany--a Delphi study. Transp.

    Res. Part D Transp. Environ.

    73, 87-107 (2019).

    Article[11] Google Scholar[12]

  • Bae, Y., Mitra, S. K., Rindt, C. R. & Ritchie, S.

    G. Factors influencing alternative fuel adoption decisions in heavy-duty vehicle fleets. Transp.

    Res. Part D Transp. Environ.

    102, 103150 (2022).

    Article[13] Google Scholar[14]

  • Ragon, P.-L. & Rodriguez, F. Road Freight Decarbonization in Europe. Readiness of the European Fleets for Zero-emission Trucking https://theicct.org/wp-content/uploads/2022/09/road-freight-decarbonization-europe-sep22.pdf[15] (ICCT, 2022).

  • Spiller, B., Lohawala, N. & DeAngeli, E.

    Medium- and Heavy-Duty Vehicle Electrification: Challenges, Policy Solutions, and Open Research Questions https://media.rff.org/documents/Report_23-03_v3.pdf[16] (RFF, 2023).

  • Muratori, M., Borlaug, B., Ledna, C., Jadun, P. & Kailas, A. Road to zero: research and industry perspectives on zero-emission commercial vehicles. iScience 26, 106751 (2023).

    Article[17] Google Scholar[18]

  • Plotz, P. Hydrogen technology is unlikely to play a major role in sustainable road transport.

    Nat. Electron.

    5, 8-10 (2022).

    Article[19] Google Scholar[20]

  • Why the battery electric drive represents the future for trucks. Traton https://traton.com/en/newsroom/current-topics/why-the-battery-electric-drive-represents-the-future-for-trucks.html[21] (2022).

  • Staffell, I. et al.

    The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci.

    12, 463-491 (2019).

    Article[22] Google Scholar[23]

  • Meyer, T. Decarbonizing road freight transportation--a bibliometric and network analysis. Transp.

    Res. Part D Transp. Environ.

    89, 102619 (2020).

    Article[24] Google Scholar[25]

  • Borlaug, B. et al. Heavy-duty truck electrification and the impacts of depot charging on electricity distribution systems. Nat.

    Energy 6, 673-682 (2021).

    Article[26] Google Scholar[27]

  • Nykvist, B. & Olsson, O. The feasibility of heavy battery electric trucks. Joule 5, 901-913 (2021).

    Article[28] Google Scholar[29]

  • Niazi, A., Dai, J.

    S., Balabani, S. & Seneviratne, L. Product cost estimation: technique classification and methodology review. J.

    Manuf. Sci. Eng.

    128, 563-575 (2006).

    Article[30] Google Scholar[31]

  • Farmer, J. D. & Lafond, F. How predictable is technological progress?

    Res. Policy 45, 647-665 (2016).

    Article[32] Google Scholar[33]

  • Schmidt, O., Hawkes, A., Gambhir, A. & Staffell, I. The future cost of electrical energy storage based on experience rates.

    Nat. Energy https://doi.org/10.1038/nenergy.2017.110[34] (2017).

  • Luo, X., Wang, J., Dooner, M. & Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation.

    Appl. Energy 137, 511-536 (2015).

    Article[35] Google Scholar[36]

  • Schmuch, R., Wagner, R., Horpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries.

    Nat. Energy 3, 267-278 (2018).

    Article[37] Google Scholar[38]

  • Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles.

    Nat. Clim. Change 5, 329-332 (2015).

    Article[39] Google Scholar[40]

  • Mauler, L., Duffner, F., Zeier, W.

    G. & Leker, J. Battery cost forecasting: a review of methods and results with an outlook to 2050. Energy Environ.

    Sci.

    14, 4712-4739 (2021).

    Article[41] Google Scholar[42]

  • IEA. Global EV Outlook 2023. Catching Up With Climate Ambitions (IEA, 2023).

  • Becker, H. et al.

    Preparing the World for Zero-emission Trucks. The Mainstays of Commercial Road Transport Will Soon Benefit from Cost-effective, Zero-emission Horsepower (McKinsey & Co., 2022).

  • Atiya, A. F.

    Why does forecast combination work so well? Int. J.

    Forecasting 36, 197-200 (2020).

    Article[43] Google Scholar[44]

  • Clemen, R. T. Combining forecasts: a review and annotated bibliography.

    Int. J. Forecasting 5, 559-583 (1989).

    Article[45] Google Scholar[46]

  • Timmermann, A.

    Chapter 4 forecast combinations. Handb. Econ.

    Forecasting 1, 135-196 (2006).

    Article[47] Google Scholar[48]

  • Frith, J. T., Lacey, M. J. & Ulissi, U.

    A non-academic perspective on the future of lithium-based batteries. Nat. Commun.

    14, 420 (2023).

    Article[49] Google Scholar[50]

  • Drive to zero's zero-emission technology inventory (ZETI). Tool version 8.0. CALSTART https://globaldrivetozero.org/tools/zero-emission-technology-inventory/[51] (2022).

  • Junginger, M.

    Technological Learning in the Transition to a Low-Carbon Energy System. Conceptual Issues, Empirical Findings, and Use in Energy Modeling (Elsevier Science & Technology, 2020).

  • Teichert, O., Link, S., Schneider, J., Wolff, S. & Lienkamp, M. Techno-economic cell selection for battery-electric long-haul trucks. eTransportation 16, 100225 (2023).

    Article[52] Google Scholar[53]

  • Basma, H., Saboori, A. & Rodriguez, F.

    Total Cost of Ownership for Tractor-trailers in Europe: Battery-electric Versus Diesel https://theicct.org/wp-content/uploads/2021/11/tco-bets-europe-1-nov21.pdf[54] (ICCT, 2021).

  • Phadke, A., Khandekar, A., Abhyankar, N., Wooley, D. & Rajagopal, D. Why Regional and Long-Haul Trucks are Primed for Electrification Now (LBNL, 2021).

  • Sripad, S. & Viswanathan, V. Quantifying the economic case for electric semi-trucks.

    ACS Energy Lett.

    4, 149-155 (2019).

    Article[55] Google Scholar[56]

  • Odenweller, A., Ueckerdt, F., Nemet, G. F., Jensterle, M. & Luderer, G. Probabilistic feasibility space of scaling up green hydrogen supply.

    Nat Energy 7, 854-865 (2022).

    Article[57] Google Scholar[58]

  • Nemet, G., Greene, J., Muller-Hansen, F. & Minx, J. C. Dataset on the adoption of historical technologies informs the scale-up of emerging carbon dioxide removal measures.

    Commun. Earth Environ.

    4, 397 (2023).

    Article[59] Google Scholar[60]

  • Hsieh, I.-Y. L., Pan, M.

    S., Chiang, Y.-M. & Green, W. H. Learning only buys you so much: practical limits on battery price reduction.

    Appl. Energy 239, 218-224 (2019).

    Article[61] Google Scholar[62]

  • Mauler, L., Lou, X., Duffner, F. & Leker, J. Technological innovation vs. tightening raw material markets: falling battery costs put at risk.

    Energy Adv.

    1, 136-145 (2022).

    Article[63] Google Scholar[64]

  • BloombergNEF's annual battery price survey 2022. Lithium-ion battery pack prices rise for first time to an average of £151/kWh. BloombergNEF https://about.bnef.com/blog/lithium-ion-battery-pack-prices-rise-for-first-time-to-an-average-of-151-kwh[65] (2022).

  • The Lithium-Ion (EV) Battery Market and Supply Chain.

    Market Drivers and Emerging Supply Chain Risks https://content.rolandberger.com/hubfs/07_presse/Roland%20Berger_The%20Lithium-Ion%20Battery%20Market%20and%20Supply%20Chain_2022_final.pdf[66] (Roland Berger, 2022).

  • Strategic Research and Innovation Agenda https://bepassociation.eu/wp-content/uploads/2021/09/BATT4EU_reportA4_SRIA_V15_September.pdf[67] (BATT4EU, 2021).

  • Kane, M. Elon Musk confirms Tesla Semi will enter the market later this year. InsideEVs https://insideevs.com/news/603515/tesla-semi-deliveries-later-this-year/[68] (2022).

  • Marcinkoski, J. et al.

    DOE Advanced Truck Technologies. Subsection of the Electrified Powertrain Roadmap--Technical Targets for Hydrogen-Fueled Long-Haul Tractor-Trailer Trucks https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/19006_hydrogen_class8_long_haul_truck_targets.pdf?Status=Master[69] (DOE, 2019).

  • Strategic Research and Innovation Agenda 2021-2027 Annex to GB decision number CleanHydrogen-GB-2022-02 https://www.clean-hydrogen.europa.eu/about-us/key-documents/strategic-research-and-innovation-agenda_en[70] (Clean Hydrogen Partnership, 2022).

  • Cullen, D. A. et al.

    New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6, 462-474 (2021).

    Article[71] Google Scholar[72]

  • Gunter, F.

    J. & Wassiliadis, N. State of the art of lithium-ion pouch cells in automotive applications: cell teardown and characterization. J.

    Electrochem. Soc.

    169, 30515 (2022).

    Article[73] Google Scholar[74]

  • Ank, M. et al. Lithium-ion cells in automotive applications: Tesla 4680 cylindrical cell teardown and characterization.

    J. Electrochem. Soc.

    170, 120536 (2023).

    Article[75] Google Scholar[76]

  • Gao, Y., Pan, Z., Sun, J., Liu, Z. & Wang, J. High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett.

    14, 94 (2022).

    Article[77] Google Scholar[78]

  • Battery Requirements for Future Automotive Applications https://eucar.be/wp-content/uploads/2019/08/20190710-EG-BEV-FCEV-Battery-requirements-FINAL.pdf[79] (EUCAR, 2019).

  • Cai, W., Wu, X., Zhou, M., Liang, Y. & Wang, Y. Review and development of electric motor systems and electric powertrains for new energy vehicles. Automot.

    Innov.

    4, 3-22 (2021).

    Article[80] Google Scholar[81]

  • Husain, I. et al. Electric Drive Technology Trends, Challenges, and Opportunities for Future Electric Vehicles (ORNL, 2021).

  • Noll, B., Del Val, S., Schmidt, T. S. & Steffen, B.

    Analyzing the competitiveness of low-carbon drive-technologies in road-freight: a total cost of ownership analysis in Europe. Appl. Energy 306, 118079 (2022).

    Article[82] Google Scholar[83]

  • Mauler, L., Dahrendorf, L., Duffner, F., Winter, M. & Leker, J.

    Cost-effective technology choice in a decarbonized and diversified long-haul truck transportation sector: a US case study. J. Energy Storage 46, 103891 (2022).

    Article[84] Google Scholar[85]

  • Hyndman, R.

    J. & Athanasopoulos, G. in Forecasting: Principles and Practice 2nd edn Ch.

    7 (OTexts, 2018).

  • Guthrie, W.

    F. e-Handbook of Statistical Methods Ch.

    6.4.3 http://www.itl.nist.gov/div898/handbook/[86] (NIST, 2020).

  • References

    1. ^ Article (doi.org)
    2. ^ Google Scholar (scholar.google.com)
    3. ^ Article (doi.org)
    4. ^ Google Scholar (scholar.google.com)
    5. ^ https://www.iea.org/reports/tracking-clean-energy-progress-2023 (www.iea.org)
    6. ^ https://www.consilium.europa.eu/en/press/press-releases/2024/01/18/heavy-duty-vehicles-council-and-parliament-reach-a-deal-to-lower-co2-emissions-from-trucks-buses-and-trailers (www.consilium.europa.eu)
    7. ^ https://www.gov.ca.gov/2023/04/28/california-approves-worlds-first-regulation-to-phase-out-dirty-combustion-trucks-and-protect-public-health/ (www.gov.ca.gov)
    8. ^ https://theicct.org/china-ev-efforts-mar22 (theicct.org)
    9. ^ Article (doi.org)
    10. ^ Google Scholar (scholar.google.com)
    11. ^ Article (doi.org)
    12. ^ Google Scholar (scholar.google.com)
    13. ^ Article (doi.org)
    14. ^ Google Scholar (scholar.google.com)
    15. ^ https://theicct.org/wp-content/uploads/2022/09/road-freight-decarbonization-europe-sep22.pdf (theicct.org)
    16. ^ https://media.rff.org/documents/Report_23-03_v3.pdf (media.rff.org)
    17. ^ Article (doi.org)
    18. ^ Google Scholar (scholar.google.com)
    19. ^ Article (doi.org)
    20. ^ Google Scholar (scholar.google.com)
    21. ^ https://traton.com/en/newsroom/current-topics/why-the-battery-electric-drive-represents-the-future-for-trucks.html (traton.com)
    22. ^ Article (doi.org)
    23. ^ Google Scholar (scholar.google.com)
    24. ^ Article (doi.org)
    25. ^ Google Scholar (scholar.google.com)
    26. ^ Article (doi.org)
    27. ^ Google Scholar (scholar.google.com)
    28. ^ Article (doi.org)
    29. ^ Google Scholar (scholar.google.com)
    30. ^ Article (doi.org)
    31. ^ Google Scholar (scholar.google.com)
    32. ^ Article (doi.org)
    33. ^ Google Scholar (scholar.google.com)
    34. ^ https://doi.org/10.1038/nenergy.2017.110 (doi.org)
    35. ^ Article (doi.org)
    36. ^ Google Scholar (scholar.google.com)
    37. ^ Article (doi.org)
    38. ^ Google Scholar (scholar.google.com)
    39. ^ Article (doi.org)
    40. ^ Google Scholar (scholar.google.com)
    41. ^ Article (doi.org)
    42. ^ Google Scholar (scholar.google.com)
    43. ^ Article (doi.org)
    44. ^ Google Scholar (scholar.google.com)
    45. ^ Article (doi.org)
    46. ^ Google Scholar (scholar.google.com)
    47. ^ Article (doi.org)
    48. ^ Google Scholar (scholar.google.com)
    49. ^ Article (doi.org)
    50. ^ Google Scholar (scholar.google.com)
    51. ^ https://globaldrivetozero.org/tools/zero-emission-technology-inventory/ (globaldrivetozero.org)
    52. ^ Article (doi.org)
    53. ^ Google Scholar (scholar.google.com)
    54. ^ https://theicct.org/wp-content/uploads/2021/11/tco-bets-europe-1-nov21.pdf (theicct.org)
    55. ^ Article (doi.org)
    56. ^ Google Scholar (scholar.google.com)
    57. ^ Article (doi.org)
    58. ^ Google Scholar (scholar.google.com)
    59. ^ Article (doi.org)
    60. ^ Google Scholar (scholar.google.com)
    61. ^ Article (doi.org)
    62. ^ Google Scholar (scholar.google.com)
    63. ^ Article (doi.org)
    64. ^ Google Scholar (scholar.google.com)
    65. ^ https://about.bnef.com/blog/lithium-ion-battery-pack-prices-rise-for-first-time-to-an-average-of-151-kwh (about.bnef.com)
    66. ^ https://content.rolandberger.com/hubfs/07_presse/Roland%20Berger_The%20Lithium-Ion%20Battery%20Market%20and%20Supply%20Chain_2022_final.pdf (content.rolandberger.com)
    67. ^ https://bepassociation.eu/wp-content/uploads/2021/09/BATT4EU_reportA4_SRIA_V15_September.pdf (bepassociation.eu)
    68. ^ https://insideevs.com/news/603515/tesla-semi-deliveries-later-this-year/ (insideevs.com)
    69. ^ https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/19006_hydrogen_class8_long_haul_truck_targets.pdf?Status=Master (www.hydrogen.energy.gov)
    70. ^ https://www.clean-hydrogen.europa.eu/about-us/key-documents/strategic-research-and-innovation-agenda_en (www.clean-hydrogen.europa.eu)
    71. ^ Article (doi.org)
    72. ^ Google Scholar (scholar.google.com)
    73. ^ Article (doi.org)
    74. ^ Google Scholar (scholar.google.com)
    75. ^ Article (doi.org)
    76. ^ Google Scholar (scholar.google.com)
    77. ^ Article (link.springer.com)
    78. ^ Google Scholar (scholar.google.com)
    79. ^ https://eucar.be/wp-content/uploads/2019/08/20190710-EG-BEV-FCEV-Battery-requirements-FINAL.pdf (eucar.be)
    80. ^ Article (link.springer.com)
    81. ^ Google Scholar (scholar.google.com)
    82. ^ Article (doi.org)
    83. ^ Google Scholar (scholar.google.com)
    84. ^ Article (doi.org)
    85. ^ Google Scholar (scholar.google.com)
    86. ^ http://www.itl.nist.gov/div898/handbook/ (www.itl.nist.gov)